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Problem 1

(1.5) Let A be a nonempty set of the real numbers which is bounded below. Let −A be the set of all numbers

−x, where x ∈ A. Prove that

inf A = − sup−A.

Solution

We begin by examining the infimum of A. Let α ∈ A be the number such that

α ≤ x, ∀x ∈ A.

By definition, inf A = α. By construction of −A, the number β ∈ −A such that

y ≤ β, ∀y ∈ −A,

is the supremum, sup−A = β. Note that each element y corresponds to an element x ∈ A such that y = −x.

Without loss of generality, we rewrite the previous equation in terms of x and observe that the supremum

of −A is the number such that

−x ≤ β, ∀x ∈ A.

By properties of ≤, we have that

x ≥ −β, ∀x ∈ A.

By definition, inf A = −β, and so, inf A = α = −β = − sup−A.

Problem 2

(1.7) Fix b > 1, y > 0, and prove that there is a unique real x such that bx = y, by completing the following

outline. (This x is called the logarithm of y to the base b.)

(a) For any positive integer n, bn − 1 ≥ n (b− 1).

(b) Hence b− 1 ≥ n
(
b1/n − 1

)
.

(c) If t > 1 and n > (b− 1) / (t− 1), then b1/n < t.

(d) If w is such that bw < y, then bw+(1/n) < y for sufficiently large n.

(e) If w is such that bw > y, then bw−(1/n) > y for sufficiently large n.

(f) Let A be the set of all w such that bw < y, and show that x = supA satisfies bx = y.

(g) Prove that this x is unique.

Solution

Problem 2 continued on next page. . . 1
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Part (a)

Consider the factorization

bn − 1 = (b− 1)
(
bn−1 + · · ·+ b+ 1

)
.

Because b > 1, bn−1 + · · ·+ b+ 1 > n, hence

bn − 1 = (b− 1)
(
bn−1 + · · ·+ b+ 1

)
≥ n (b− 1) .

Part (b)

Because b > 1 it follows that indeed b1/n > 1. By Part (a),

(
b1/n

)n

− 1 ≥ n
(
b1/n − 1

)
b− 1 ≥ n

(
b1/n − 1

)
.

Part (c)

Rearranging the inequality, n (t− 1) > (b− 1) implies

n (t− 1) > (b− 1) ≥ n
(
b1/n − 1

)
=⇒ n (t− 1) > n

(
b1/n − 1

)
t− 1 > b1/n − 1

t > b1/n.

Part (d)

By assumption, it follows that 1 < yb−w. Choose some n such that

n >
b− 1

yb−w − 1
.

We can then apply Part (c) obtaining b1/n < yb−w leading to bw+(1/n) < y.

Part (e)

Similar to Part (d), it follows from the assumption that bw/y > 1 and we can apply Part (c) in an analogous

way in that we choose n such that

n >
b− 1
bw

y − 1
.

Thus,

b1/n < bw/y =⇒ yb1/n < bw =⇒ y < bw−(1/n).

Problem 2 continued on next page. . . 2
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Part (f)

Assume that bx > y. By Part (e), there exists some n such that bx > bx−(1/n) > y. Because bx > bx−(1/n)

implies x > x− (1/n), x− (1/n) is an upper bound on A. However, this can’t be because x is the least upper

bound! Furthermore, assume bx < y. By Part (d), then there exists some n such that bx < bx+(1/n) < y. It

follows that x < x+ (1/n). Since x+ (1/n) ∈ A, x can’t be the least upper bound, however, x is the least

upper bound by hypothesis, and so by the ordering of the real numbers bx = y.

Part (g)

Because bx is strictly increasing and the supremum of any ordered set is unique, it follows that if bx = y = bw,

then x = w.

Problem 3

(1.8) Prove that no order can be defined in the complex field that turns it into an ordered field.

Solution

Lemma 1. For any ordered field F, for all x ∈ F, x2 > 0 if x ̸= 0.

Proof. Suppose x > 0. by the axioms of an ordered field, xx = xx > 0. Suppose x < 0. Because

x2 = xx = (−x) (−x) by the cancellation property of additive inverses. From our previous reasoning

x2 > 0.

Suppose that there is such an order. We know that 1 = 12, and so 0 < 1 by Lemma 1. Adding −1 to both

sides, −1 < 0. However, i2 = −1 > 0 by Lemma 1, and so we have a contradiction! So, it must be the case

that since −1 < 0 and 0 < −1, 0 = −1, but this can’t be true by the field axioms. Thus, there exists no

such order on C that makes C an ordered field.

Problem 4

(2.2) A complex number is said to be algebraic if there are integers a0, . . . , an, not all zero, such that

anz
n + · · ·+ a1z + a0 = 0.

Prove that the set of all algebraic numbers is countable.

Solution

We’ll assume the fundamental theorem of algebra to be true and note that for each set of coefficients (not

all zero) there are n roots of the associated polynomial. Associate to such a polynomial an n + 1-tuple

(a0, . . . , an). Because Pn
C (Z) ∼= Zn+1 and Zn+1 is countable then so is Pn

C (Z). Taking the union of all such

polynomials we have
⋃

n∈N
Pn
C (Z) which is of course a countable set. By the fundamental theorem of algebra,

every nth degree polynomial has exactly n roots. Thus, the collection of all roots in C of all polynomials

over Z is a countable union of finite sets which must be countable.
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Problem 5

(2.3) Prove that there exist real numbers which are not algebraic.

Solution

Let A denote the set of algebraic numbers. If all real numbers are algebraic then there exists some surjective

map f : A → R. However, since A is countable and R, there exists no such f . So, there exists some x ∈ R
that’s not algebraic.

Problem 6

(2.12) Let K ⊂ R consist of 0 and the numbers 1/n, for n = 1, 2, . . .. Prove that K is compact directly from

the definition.

Solution

Let {Vα} be some open cover of K. Then there exists some Vα∗ such that 0 ∈ Vα∗ . Because each Vα is an

open set, Vα∗ is an open set, hence there exists some ε > 0 such that Bε (0) ⊂ Vα∗ . By the Archimedian

property of K as a subset of R, there exists some N such that for all n ∈ N, 1/n < ε meaning 1/n ∈ Vα∗ .

Asides from the points 1/n where n ≤ N , all points are elements of Vα∗ and points not in Vα∗ are contained

in at least one other open set Vα. Taking the union of Vα∗ and a finite number of sets containing the rest of

the points, we’ve constructed a finite open cover. So, K is compact by this construction.

Problem 7

(2.30) Imitate the proof of Theorem 2.43 to obtain the following result: If Rk =
∞⋃

n=1
Fn, where each Fn is a

closed subset of Rk, then at least one Fn has a nonempty interior.

Solution

For each n ∈ N construct Gn = Rk \ Fn. We know that Gn is open for all n ∈ N and further that

∞⋂
n=1

Gn =

∞⋂
n=1

Rk \ Fn = ∅.

This means that each Gn isn’t dense in Rk. Hence there exist some N ∈ N such that ḠN ̸= Rk. However,

F ◦
N = Rk \ ḠN , and so F ◦

N ̸= ∅, i.e., there’s some FN with nonempty interior F ◦
N .

Problem 8

(3.8) If
∑

an converges, and if {bn} is monotonic and bounded, prove that
∑

anbn converges.

Solution

Without loss of generality, assume {bn} is increasing1. Because {bn} is bounded it also converges. Let

lim
n→∞

bn = b. We know that the series
∑

an (b− bn) converges since lim
n→∞

an (b− bn) = 0 and {bn} is

an increasing sequence combined with the fact that
∑

an converges. Because the sum/difference of two

convergent series is again convergent and

∑
an (b− bn) = b

∑
an −

∑
anbn,∑

anbn converges.

1We can replace {bn} with {−bn} in the case that {bn} is decreasing.
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Problem 9

(3.25) Let X be the metric space whose points are the rational numbers, with the metric d (x, y) = |x− y|.
What is the completion of this space?

Solution

We know that the metric is the restriction of the usual Euclidean metric on R (this extension of d makes R
complete).

Problem 10

(4.1) Suppose f is a real function defined on R which satisfies

lim
h→0

[f (x+ h)− f (x− h)] = 0

for every x ∈ R. Does this imply that f is continuous.

Solution

No! Let f (x) = 0 for all x ̸= 0 and f (0) = c where c ∈ R. Clearly the above condition holds, but f isn’t

continuous!

Problem 11

(4.8) Let f be a uniformly continuous on the bounded set E in R. Prove that f is bounded on E. Show that

the conclusion is false if boundedness of E is omitted from the hypothesis.

Solution

Let’s assume that f isn’t bounded on E. Then there exists a sequence {xn} where each xn ∈ E for n ∈ N
such that |f(xn)| > n. Because {xn} is a sequence in a bounded set, the sequence itself is bounded and

therefore has a convergent subsequence. Call this subsequence {xαn
}. Because this subsequence converges,

it’s a Cauchy sequence in E and therefore {f(xαn
)} must also be a Cauchy sequence in E because f is

uniformly continuous on E. However, |f(xαn)| > αn > n meaning f can’t be a Cauchy sequence, thus we

have a contradiction and f must be bounded on E.

To show that we need the boundedness of E to arrive at the conclusion, consider the identity function

id : R → R. Clearly id is uniformly continuous but R isn’t bounded, yet id isn’t unbounded, thus we need

E to be a bounded set in R.

Problem 12

(4.12) A uniformly continuous function of a uniformly continuous function is uniformly continuous. State

this more precisely and prove it.

Solution

Proposition 2. Let f : X → Y and g : Y → Z be uniformly continuous functions on metric spaces X, Y ,

and Z. The composition gf : X → Z is also uniformly continuous.

Problem 12 continued on next page. . . 5
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Proof. By the uniform continuity of f , for all ε′ > 0, there exists a delta δ > 0 such that

dY (f(x1), f(x2)) < ε′ whenever dX (x1, x2) < δ

for all x1, x2 ∈ X. Similarly, because g is uniformly continuous, for all ε > 0, there exists a ε′ > 0 such that

dZ (g(f(x1)), g(f(x2))) < ε whenever dY (f(x1), f(x2)) < ε′

which implies this is the case whenever dX (x1, x2) < δ for any x1, x2 ∈ X. Thus, gf is uniformly continuous.

Problem 13

(4.14) Let I = [0, 1] be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that

f(x) = x for at least one x ∈ I.

Solution

Consider the function g(x) = x−f(x). Because g is a composition of f and the addition map, g is continuous.

Let’s assume that g(x) ̸= 0 for any x ∈ I. At the point x = 0, g(0) = −f(0) < 0 by our assumption and at

the point x = 1, g(1) = 1− f(1) > 0. However, by the intermediate value theorem, there exists a x ∈ (0, 1)

such that g(x) = 0 which implies x− f(x) = 0 which leads to f(x) = x for some x ∈ I.

Problem 14

(5.4) If

C0 +
C1

2
+ · · ·+ Cn−1

n
+

Cn

n+ 1
= 0,

where C0, . . . , Cn are real constants, prove that the equation

C0 + C1x+ · · ·Cnx
n = 0

has at least one real root between 0 and 1.

Solution

Let P (x) = C0X+ C2

2 x2+ · · ·+ Cn

n+1x
n+1. At x = 0 and x = 1, P (x) = 0. Hence, by the mean value theorem,

there exists some x ∈ (0, 1) such that

dP

dx
= C0 + · · ·+ Cnx

n = 0.
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Problem 15

(5.7) Suppose f ′(x), g′(x) exist, g′(x) ̸= 0, and f(x) = g(x) = 0. Prove that

lim
t→x

f(t)

g(t)
=

f ′(x)

g′(x)
.

Solution

By the alternative definition of the derivative, the limits

lim
t→x

f(t)− f(x)

t− x
and lim

t→x

g(t)− g(x)

t− x

exist. Rewriting the left hand side of the equation in the problem statement,

lim
t→x

f(t)

g(t)
= lim

t→x

f(t)− f(x)

f(t)− f(x)
= lim

t→x

f(t)−f(x)
t−x

g(t)−g(x)
t−x

=
lim
t→x

f(t)−f(x)
t−x

lim
t→x

g(t)−g(x)
t−x

=
f ′(x)

g′(x)
.

Problem 16

(5.20) Formulate and prove an inequality which follows from Taylor’s theorem and which remains valid for

vector-valued functions.

Solution

Theorem 3. Let f : [a, b] → Rn be a continuous map, k be natural number, f (k−1) be continuous on [a, b],

and f (n)(t) exist for all t ∈ (a, b). Define the polynomial

P (t) =

n−1∑
k=0

f (k−1)(α)

k!
(t− α)k.

Let α ̸= β where both are in the interval [a, b]. There exists an α < x < β such that

∥f(β)− P (β)∥ ≤
∥∥f (n)(x)

∥∥
n!

|β − α|n.

Proof. Let ζ = f(β) − P (β) and ϕ(t) = ζ · f(t). Clearly ϕ satisfies the assumptions in Theorem 3. By

Taylor’s theorem,

Problem 16 continued on next page. . . 7
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ϕ(β) =

n−1∑
k=0

ϕ(k)(α)

k!
(β − α)k +

ζ · f (n)(t)

n!
(β − α)n

= ζ · P (β) +
ζ · f (n)(t)

n!
(β − α)n

ϕ(β)− ζ · P (β) =
ζ · f (n)(t)

n!
(β − α)n

ζ · (f(β)− P (β)) =

ζ · ζ =

∥ζ∥2 =
ζ · f (n)(t)

n!
(β − α)n

=

∣∣∣∣ζ · f (n)(t)

n!
(β − α)n

∣∣∣∣
≤

∥ζ∥
∥∥f (n)(t)

∥∥
n!

|β − α|n.

By definition of ζ,

∥f(β)− P (β)∥ ≤
∥∥f (n)(t)

∥∥
n!

|β − α|n.

8


	Problem 1
	Problem 2
	Part (a)
	Part (b)
	Part (c)
	Part (d)
	Part (e)
	Part (f)
	Part (g)

	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7
	Problem 8
	Problem 9
	Problem 10
	Problem 11
	Problem 12
	Problem 13
	Problem 14
	Problem 15
	Problem 16

