Selected Problems from Rudin's Book

Tenenbaum, Max

(1.5) Let A be a nonempty set of the real numbers which is bounded below. Let -A be the set of all numbers -x, where  $x \in A$ . Prove that

$$\inf A = -\sup -A.$$

### Solution

We begin by examining the infimum of A. Let  $\alpha \in A$  be the number such that

$$\alpha \le x, \quad \forall x \in A.$$

By definition, inf  $A = \alpha$ . By construction of -A, the number  $\beta \in -A$  such that

$$y \le \beta, \ \forall y \in -A,$$

is the supremum,  $\sup -A = \beta$ . Note that each element y corresponds to an element  $x \in A$  such that y = -x. Without loss of generality, we rewrite the previous equation in terms of x and observe that the supremum of -A is the number such that

$$-x < \beta, \quad \forall x \in A.$$

By properties of  $\leq$ , we have that

$$x \ge -\beta, \quad \forall x \in A.$$

By definition, inf  $A = -\beta$ , and so, inf  $A = \alpha = -\beta = -\sup -A$ .

## Problem 2

(1.7) Fix b > 1, y > 0, and prove that there is a unique real x such that  $b^x = y$ , by completing the following outline. (This x is called the *logarithm* of y to the base b.)

- (a) For any positive integer  $n, b^n 1 \ge n(b-1)$ .
- (b) Hence  $b 1 \ge n (b^{1/n} 1)$ .
- (c) If t > 1 and n > (b-1)/(t-1), then  $b^{1/n} < t$ .
- (d) If w is such that  $b^w < y$ , then  $b^{w+(1/n)} < y$  for sufficiently large n.
- (e) If w is such that  $b^w > y$ , then  $b^{w-(1/n)} > y$  for sufficiently large n.
- (f) Let A be the set of all w such that  $b^w < y$ , and show that  $x = \sup A$  satisfies  $b^x = y$ .
- (g) Prove that this x is unique.

#### Solution

## Part (a)

Consider the factorization

$$b^{n}-1=(b-1)(b^{n-1}+\cdots+b+1).$$

Because b > 1,  $b^{n-1} + \cdots + b + 1 > n$ , hence

$$b^{n}-1=(b-1)(b^{n-1}+\cdots+b+1)\geq n(b-1).$$

### Part (b)

Because b > 1 it follows that indeed  $b^{1/n} > 1$ . By Part (a),

$$(b^{1/n})^n - 1 \ge n(b^{1/n} - 1)$$
  
 $b - 1 \ge n(b^{1/n} - 1)$ .

## Part (c)

Rearranging the inequality, n(t-1) > (b-1) implies

$$n(t-1) > (b-1) \ge n(b^{1/n} - 1) \implies n(t-1) > n(b^{1/n} - 1)$$

$$t-1 > b^{1/n} - 1$$

$$t > b^{1/n}.$$

## Part (d)

By assumption, it follows that  $1 < yb^{-w}$ . Choose some n such that

$$n > \frac{b-1}{yb^{-w} - 1}.$$

We can then apply Part (c) obtaining  $b^{1/n} < yb^{-w}$  leading to  $b^{w+(1/n)} < y$ .

## Part (e)

Similar to Part (d), it follows from the assumption that  $b^w/y > 1$  and we can apply Part (c) in an analogous way in that we choose n such that

$$n > \frac{b-1}{\frac{b^w}{y} - 1}.$$

Thus,

$$b^{1/n} < b^w/y \implies yb^{1/n} < b^w \implies y < b^{w-(1/n)}.$$

## Part (f)

Assume that  $b^x > y$ . By Part (e), there exists some n such that  $b^x > b^{x-(1/n)} > y$ . Because  $b^x > b^{x-(1/n)}$  implies x > x - (1/n), x - (1/n) is an upper bound on A. However, this can't be because x is the least upper bound! Furthermore, assume  $b^x < y$ . By Part (d), then there exists some n such that  $b^x < b^{x+(1/n)} < y$ . It follows that x < x + (1/n). Since  $x + (1/n) \in A$ , x can't be the least upper bound, however, x is the least upper bound by hypothesis, and so by the ordering of the real numbers  $b^x = y$ .

## Part (g)

Because  $b^x$  is strictly increasing and the supremum of any ordered set is unique, it follows that if  $b^x = y = b^w$ , then x = w.

# Problem 3

(1.8) Prove that no order can be defined in the complex field that turns it into an ordered field.

#### Solution

**Lemma 1.** For any ordered field  $\mathbb{F}$ , for all  $x \in \mathbb{F}$ ,  $x^2 > 0$  if  $x \neq 0$ .

*Proof.* Suppose x > 0. by the axioms of an ordered field,  $x^x = xx > 0$ . Suppose x < 0. Because  $x^2 = xx = (-x)(-x)$  by the cancellation property of additive inverses. From our previous reasoning  $x^2 > 0$ .

Suppose that there is such an order. We know that  $1 = 1^2$ , and so 0 < 1 by Lemma 1. Adding -1 to both sides, -1 < 0. However,  $i^2 = -1 > 0$  by Lemma 1, and so we have a contradiction! So, it must be the case that since -1 < 0 and 0 < -1, 0 = -1, but this can't be true by the field axioms. Thus, there exists no such order on  $\mathbb C$  that makes  $\mathbb C$  an ordered field.

### Problem 4

(2.2) A complex number is said to be algebraic if there are integers  $a_0, \ldots, a_n$ , not all zero, such that

$$a_n z^n + \dots + a_1 z + a_0 = 0.$$

Prove that the set of all algebraic numbers is countable.

#### Solution

We'll assume the fundamental theorem of algebra to be true and note that for each set of coefficients (not all zero) there are n roots of the associated polynomial. Associate to such a polynomial an n+1-tuple  $(a_0,\ldots,a_n)$ . Because  $P^n_{\mathbb{C}}(\mathbb{Z})\cong\mathbb{Z}^{n+1}$  and  $\mathbb{Z}^{n+1}$  is countable then so is  $P^n_{\mathbb{C}}(\mathbb{Z})$ . Taking the union of all such polynomials we have  $\bigcup_{n\in\mathbb{N}}P^n_{\mathbb{C}}(\mathbb{Z})$  which is of course a countable set. By the fundamental theorem of algebra,

every  $n^{\text{th}}$  degree polynomial has exactly n roots. Thus, the collection of all roots in  $\mathbb{C}$  of all polynomials over  $\mathbb{Z}$  is a countable union of finite sets which must be countable.

(2.3) Prove that there exist real numbers which are not algebraic.

#### Solution

Let  $\mathbb{A}$  denote the set of algebraic numbers. If all real numbers are algebraic then there exists some surjective map  $f: \mathbb{A} \to \mathbb{R}$ . However, since  $\mathbb{A}$  is countable and  $\mathbb{R}$ , there exists no such f. So, there exists some  $x \in \mathbb{R}$  that's not algebraic.

# Problem 6

(2.12) Let  $K \subset \mathbb{R}$  consist of 0 and the numbers 1/n, for  $n = 1, 2, \ldots$  Prove that K is compact directly from the definition.

#### Solution

Let  $\{V_{\alpha}\}$  be some open cover of K. Then there exists some  $V_{\alpha^*}$  such that  $0 \in V_{\alpha^*}$ . Because each  $V_{\alpha}$  is an open set,  $V_{\alpha^*}$  is an open set, hence there exists some  $\varepsilon > 0$  such that  $B_{\varepsilon}(0) \subset V_{\alpha^*}$ . By the Archimedian property of K as a subset of  $\mathbb{R}$ , there exists some N such that for all  $n \in \mathbb{N}$ ,  $1/n < \varepsilon$  meaning  $1/n \in V_{\alpha^*}$ . Asides from the points 1/n where  $n \leq N$ , all points are elements of  $V_{\alpha^*}$  and points not in  $V_{\alpha^*}$  are contained in at least one other open set  $V_{\alpha}$ . Taking the union of  $V_{\alpha^*}$  and a finite number of sets containing the rest of the points, we've constructed a finite open cover. So, K is compact by this construction.

### Problem 7

(2.30) Imitate the proof of Theorem 2.43 to obtain the following result: If  $\mathbb{R}^k = \bigcup_{n=1}^{\infty} F_n$ , where each  $F_n$  is a closed subset of  $\mathbb{R}^k$ , then at least one  $F_n$  has a nonempty interior.

#### Solution

For each  $n \in \mathbb{N}$  construct  $G_n = \mathbb{R}^k \setminus F_n$ . We know that  $G_n$  is open for all  $n \in \mathbb{N}$  and further that

$$\bigcap_{n=1}^{\infty} G_n = \bigcap_{n=1}^{\infty} \mathbb{R}^k \setminus F_n = \emptyset.$$

This means that each  $G_n$  isn't dense in  $\mathbb{R}^k$ . Hence there exist some  $N \in \mathbb{N}$  such that  $\bar{G}_N \neq \mathbb{R}^k$ . However,  $F_N^{\circ} = \mathbb{R}^k \setminus \bar{G}_N$ , and so  $F_N^{\circ} \neq \emptyset$ , i.e., there's some  $F_N$  with nonempty interior  $F_N^{\circ}$ .

### Problem 8

(3.8) If  $\sum a_n$  converges, and if  $\{b_n\}$  is monotonic and bounded, prove that  $\sum a_n b_n$  converges.

### Solution

Without loss of generality, assume  $\{b_n\}$  is increasing<sup>1</sup>. Because  $\{b_n\}$  is bounded it also converges. Let  $\lim_{n\to\infty}b_n=b$ . We know that the series  $\sum a_n\,(b-b_n)$  converges since  $\lim_{n\to\infty}a_n\,(b-b_n)=0$  and  $\{b_n\}$  is an increasing sequence combined with the fact that  $\sum a_n$  converges. Because the sum/difference of two convergent series is again convergent and

$$\sum a_n (b - b_n) = b \sum a_n - \sum a_n b_n,$$

 $\sum a_n b_n$  converges.

<sup>&</sup>lt;sup>1</sup>We can replace  $\{b_n\}$  with  $\{-b_n\}$  in the case that  $\{b_n\}$  is decreasing.

(3.25) Let X be the metric space whose points are the rational numbers, with the metric d(x, y) = |x - y|. What is the completion of this space?

#### Solution

We know that the metric is the restriction of the usual Euclidean metric on  $\mathbb{R}$  (this extension of d makes  $\mathbb{R}$  complete).

### Problem 10

(4.1) Suppose f is a real function defined on  $\mathbb{R}$  which satisfies

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0$$

for every  $x \in \mathbb{R}$ . Does this imply that f is continuous.

#### Solution

No! Let f(x) = 0 for all  $x \neq 0$  and f(0) = c where  $c \in \mathbb{R}$ . Clearly the above condition holds, but f isn't continuous!

## Problem 11

(4.8) Let f be a uniformly continuous on the bounded set E in  $\mathbb{R}$ . Prove that f is bounded on E. Show that the conclusion is false if boundedness of E is omitted from the hypothesis.

#### Solution

Let's assume that f isn't bounded on E. Then there exists a sequence  $\{x_n\}$  where each  $x_n \in E$  for  $n \in \mathbb{N}$  such that  $|f(x_n)| > n$ . Because  $\{x_n\}$  is a sequence in a bounded set, the sequence itself is bounded and therefore has a convergent subsequence. Call this subsequence  $\{x_{\alpha_n}\}$ . Because this subsequence converges, it's a Cauchy sequence in E and therefore  $\{f(x_{\alpha_n})\}$  must also be a Cauchy sequence in E because f is uniformly continuous on E. However,  $|f(x_{\alpha_n})| > \alpha_n > n$  meaning f can't be a Cauchy sequence, thus we have a contradiction and f must be bounded on E.

To show that we need the boundedness of E to arrive at the conclusion, consider the identity function  $id : \mathbb{R} \to \mathbb{R}$ . Clearly id is uniformly continuous but  $\mathbb{R}$  isn't bounded, yet id isn't unbounded, thus we need E to be a bounded set in  $\mathbb{R}$ .

### Problem 12

(4.12) A uniformly continuous function of a uniformly continuous function is uniformly continuous. State this more precisely and prove it.

### Solution

**Proposition 2.** Let  $f: X \to Y$  and  $g: Y \to Z$  be uniformly continuous functions on metric spaces X, Y, and Z. The composition  $gf: X \to Z$  is also uniformly continuous.

*Proof.* By the uniform continuity of f, for all  $\varepsilon' > 0$ , there exists a delta  $\delta > 0$  such that

$$d_Y\left(f(x_1),f(x_2)\right)<\varepsilon'$$
 whenever  $d_X\left(x_1,x_2\right)<\delta$ 

for all  $x_1, x_2 \in X$ . Similarly, because g is uniformly continuous, for all  $\varepsilon > 0$ , there exists a  $\varepsilon' > 0$  such that

$$d_Z\left(g(f(x_1)),g(f(x_2))\right) < \varepsilon$$
 whenever  $d_Y\left(f(x_1),f(x_2)\right) < \varepsilon'$ 

which implies this is the case whenever  $d_X(x_1, x_2) < \delta$  for any  $x_1, x_2 \in X$ . Thus, gf is uniformly continuous.

## Problem 13

(4.14) Let I = [0,1] be the closed unit interval. Suppose f is a continuous mapping of I into I. Prove that f(x) = x for at least one  $x \in I$ .

#### Solution

Consider the function g(x) = x - f(x). Because g is a composition of f and the addition map, g is continuous. Let's assume that  $g(x) \neq 0$  for any  $x \in I$ . At the point x = 0, g(0) = -f(0) < 0 by our assumption and at the point x = 1, g(1) = 1 - f(1) > 0. However, by the intermediate value theorem, there exists a  $x \in (0, 1)$  such that g(x) = 0 which implies x - f(x) = 0 which leads to f(x) = x for some  $x \in I$ .

# Problem 14

(5.4) If

$$C_0 + \frac{C_1}{2} + \dots + \frac{C_{n-1}}{n} + \frac{C_n}{n+1} = 0,$$

where  $C_0, \ldots, C_n$  are real constants, prove that the equation

$$C_0 + C_1 x + \cdots + C_n x^n = 0$$

has at least one real root between 0 and 1.

### Solution

Let  $P(x) = C_0 X + \frac{C_2}{2} x^2 + \dots + \frac{C_n}{n+1} x^{n+1}$ . At x = 0 and x = 1, P(x) = 0. Hence, by the mean value theorem, there exists some  $x \in (0,1)$  such that

$$\frac{dP}{dx} = C_0 + \dots + C_n x^n = 0.$$

(5.7) Suppose f'(x), g'(x) exist,  $g'(x) \neq 0$ , and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}.$$

#### Solution

By the alternative definition of the derivative, the limits

$$\lim_{t \to x} \frac{f(t) - f(x)}{t - x} \quad \text{ and } \quad \lim_{t \to x} \frac{g(t) - g(x)}{t - x}$$

exist. Rewriting the left hand side of the equation in the problem statement,

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \lim_{t \to x} \frac{f(t) - f(x)}{f(t) - f(x)} = \lim_{t \to x} \frac{\frac{f(t) - f(x)}{t - x}}{\frac{g(t) - g(x)}{t - x}} = \frac{\lim_{t \to x} \frac{f(t) - f(x)}{t - x}}{\lim_{t \to x} \frac{g(t) - g(x)}{t - x}} = \frac{f'(x)}{g'(x)}.$$

# Problem 16

(5.20) Formulate and prove an inequality which follows from Taylor's theorem and which remains valid for vector-valued functions.

#### Solution

**Theorem 3.** Let  $f:[a,b] \to \mathbb{R}^n$  be a continuous map, k be natural number,  $f^{(k-1)}$  be continuous on [a,b], and  $f^{(n)}(t)$  exist for all  $t \in (a,b)$ . Define the polynomial

$$P(t) = \sum_{k=0}^{n-1} \frac{f^{(k-1)}(\alpha)}{k!} (t - \alpha)^k.$$

Let  $\alpha \neq \beta$  where both are in the interval [a, b]. There exists an  $\alpha < x < \beta$  such that

$$||f(\beta) - P(\beta)|| \le \frac{||f^{(n)}(x)||}{n!} |\beta - \alpha|^n.$$

*Proof.* Let  $\zeta = f(\beta) - P(\beta)$  and  $\phi(t) = \zeta \cdot f(t)$ . Clearly  $\phi$  satisfies the assumptions in Theorem 3. By Taylor's theorem,

$$\phi(\beta) = \sum_{k=0}^{n-1} \frac{\phi^{(k)}(\alpha)}{k!} (\beta - \alpha)^k + \frac{\zeta \cdot f^{(n)}(t)}{n!} (\beta - \alpha)^n$$

$$= \zeta \cdot P(\beta) + \frac{\zeta \cdot f^{(n)}(t)}{n!} (\beta - \alpha)^n$$

$$\phi(\beta) - \zeta \cdot P(\beta) = \frac{\zeta \cdot f^{(n)}(t)}{n!} (\beta - \alpha)^n$$

$$\zeta \cdot (f(\beta) - P(\beta)) =$$

$$\zeta \cdot \zeta =$$

$$\|\zeta\|^2 = \frac{\zeta \cdot f^{(n)}(t)}{n!} (\beta - \alpha)^n$$

$$= \left| \frac{\zeta \cdot f^{(n)}(t)}{n!} (\beta - \alpha)^n \right|$$

$$\leq \frac{\|\zeta\| \|f^{(n)}(t)\|}{n!} |\beta - \alpha|^n.$$

By definition of  $\zeta$ ,

$$||f(\beta) - P(\beta)|| \le \frac{||f^{(n)}(t)||}{n!} |\beta - \alpha|^n.$$