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Chapter 1

Introduction

1.1 Definition of Matrix Multiplication

For any standard Linear Algebra course, students are taught how to multiply matrices. For an

m× n matrix A and a n× p matrix B, AB is defined to be

AB :=


a11b11 + · · ·+ a1nbn1 · · · a11b1p + · · ·+ a1nbnp

...
. . .

...

am1b11 + · · ·+ amnbn1 · · · am1b1p + · · ·+ amnbnp

 (1.1)

where we can write A and B as

A :=


a11 · · · a1n
...

. . .
...

am1 · · · amn

 and B :=


b11 · · · b1p
...

. . .
...

bn1 · · · bnp


for aij , bjk ∈ R. Here we assume that matrices A and B contain real-valued entries for convenience.

However, all work that goes into the derivation of matrix multiplication can be extended to complex-

valued entries.

1.2 Motivation

When matrix multiplication is typically introduced, students are taught that matrix multiplication

is a computational method of composing two linear transformations. So, for example, If T and L

are linear transformations that have standard matrices A and B respectively, then supposing T ◦ L is

well-defined, T ◦ L has a standard matrix of AB.

Asides from a quick word on compositions of transformations, the rules of matrix multiplication are

not typically derived in detail. Understanding matrix multiplication does not require many prerequi-

sites. However, we review the core ideas of Linear Algebra in this chapter as a refresher to the reader.
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We then derive the rules of matrix multiplication through a lens of composing linear transformations.

It’s in our hopes that this paper will clear any mysticism that currently exists regarding the rules of

matrix multiplication.



Chapter 2

Prerequisites

2.1 Summation Notation

Let si ∈ S where S is an arbitrary set of ordered elements si. In other words, S is a sequence.

Assuming that there’s a notion of addition in S (an algebra exists on S), we can notate the sum of

elements in S to be

k∑
i=n

si = sn + · · ·+ sk

for n ≤ k ≤ |S| where |S| is the cardinality (size) of S and where n, k ∈ N. We call n the lower

limit of summation and k the upper limit of summation.

2.2 Vector Spaces

For a set V with two binary operations · and + with elements u,v,w ∈ V over a field F, the

following properties are satisfied.

u+ (v +w) = (u+ v) +w

u+ v = v + u

There exists some 0 ∈ V such that u+ 0 = u for all u ∈ V

For all u ∈ V there exists − u ∈ V such that u+ (−u) = 0

For a, b ∈ F, a(bu) = (ab)u

There exists an identity element 1 ∈ F such that 1u = u

a(u+ v) = au+ av

(a+ b)u = au+ bu
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Note that we denote scalar multiplication as au instead of a · u. We only use · to denote scalar

multiplication by itself, not when the operation acts on two elements. The operation itself is implicit

hence its omission. Moreover, vector addition takes in u,v ∈ V to produce another vector v + u ∈ V

while scalar multiplication takes in a ∈ F and u ∈ V to produce another vector in V .

For simplicity, we deal with the vector space of Rn — that is a vector space of real-valued n-tuples

— for n ∈ N where our field is R. Additionally, vectors in Rn will be written with arrowheads instead

of bold-faced font; v⃗ instead of v. We use this notation due to convenient visualizations of vectors of

Rn as ”arrows” in space. We then call 0⃗ the 0-vector and 1 the multiplicative identity of R.

2.3 Standard Basis Vectors of Rn

For Rn, we define the standard basis to be

B := {⃗e1, . . . , e⃗n} (2.1)

Note that |B| = n. By being a basis, we meant that for v⃗ ∈ Rn, and its components vi ∈ R, we

can write v⃗ as

v⃗ :=

n∑
i=1

vi⃗ei.

Here, the intuition is that a vector is defined by ”how much” the basis vectors are scaled and

combined with addition.

2.4 Inner Product Spaces

An inner product is used to measure the distance between two elements of a vector space, lengths,

and other geometric constructs. For x⃗, y⃗ ∈ Rn, we define the inner product to be

⟨x⃗, y⃗⟩ =
n∑

i=1

xiyi. (2.2)

From the inner product, we then define the norm of a vector x⃗ as

∥x⃗∥ =
√
⟨x⃗, x⃗⟩.

For Rn, we denote the inner product as x⃗ · y⃗ and call it the dot-product. Note that each vector

space’s inner product can be arbitrarily chosen. Unlike the axioms of vector spaces, various properties

of the dot-product can be proven rather than assumed. So, we omit properties of the dot-product and
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leave them as an exercise to the reader to be proven. One property that is particularly nice is that

for R2, x⃗ · y⃗ = ∥x⃗∥∥y⃗∥ cos(θ) where θ is the angle between x⃗ and y⃗. This property can be proven from

the law of cosines and can be extended into Rn to define the notion of the angle between two vectors.

Used in this expression

2.5 Linear Transformations

A linear transformation T : V → W — where u,v ∈ V and V and W are vector spaces — follows

the following properties:

T (u+ v) = T (u) + T (v)

T (ku) = kT (u)

T (0V ) = 0W

where k ∈ F where F is the field of vector-space V and where 0V and 0W are the additive identities

of vector-spaces V and W respectively.

2.6 The Standard Matrix of a Transformation

Suppose that T : Rn → Rm is given by x⃗ 7→ Ax⃗. We know

T (x⃗) = T

(
n∑

i=1

x1e⃗i

)
=

n∑
i=1

xiT (⃗ei)

for x⃗ ∈ Rn and xi ∈ R. If we let

A :=


| |

T (⃗e1) · · · T (⃗en)

| |


then

T (x⃗) = Ax⃗ =

n∑
i=1

xiT (⃗ei)

So, to multiply a matrix by a vector, we take a linear combination of the column vectors of the

matrix multiplied by the corresponding components of the vector. So, for a matrix
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A :=


a11 · · · a1n
...

. . .
...

am1 · · · amn

 ,

then if we define

a⃗k :=


a1k
...

amk

 =

m∑
i=1

aike⃗i

then we can define

Ax⃗ =

n∑
k=1

m∑
i=1

xia⃗k =

n∑
k=1

m∑
i=1

xkaike⃗i

where we can think about this process as summing all of the the column vector-vector products.



Chapter 3

Derivation

3.1 Composition of Two Linear Transformations

Suppose that T : Rn → Rm given by y⃗ 7→ Ay⃗ and L : Rp → Rn given by x⃗ 7→ Bx⃗. We know

that T ◦ L : Rp → Rm, however, our problem is how do we find the rule of the composition of

transformations? Let x⃗ ∈ Rp. We know that (T ◦L)(x⃗) = T (L(x⃗)). Because L(x⃗) ∈ Rn, let y⃗ := L(x⃗).

Then, notice that L(x⃗) = Bx⃗, and so T (⃗y) = Ay⃗ = ABx⃗.

Using the ideas presented above, we then say that AB is the standard matrix of T ◦L. Because it’s

computationally inefficient to two matrix-vector products every time we want to compute the mapping,

we want to compute AB. How do we do so?

We first posit there exists a matrix C ∈ Rm×p such that

ABx⃗ = Cx⃗.

We will first compute the LHS. We first start by defining A and B in terms of their column vectors.

Let a⃗i =
m∑
j=1

aji⃗ej and b⃗k =
n∑

j=1

bjke⃗j . We then see that ABx⃗ = Cx⃗ can be written as
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[
a⃗1 · · · a⃗n

] [⃗
b1 · · · b⃗p

]
x⃗ = Cx⃗[

a⃗1 · · · a⃗n

] p∑
k=1

xk b⃗k = Cx⃗

p∑
k=1

xkAb⃗k = Cx⃗

p∑
k=1

n∑
i=1

xk (⃗bk · e⃗k )⃗ai = Cx⃗

=⇒
p∑

k=1

n∑
i=1

xk (⃗bk · e⃗k )⃗ai =
p∑

k=1

xk c⃗k

for c⃗k =
m∑
j=1

cjke⃗j . Or, using matrices,



n∑
j=1

a1ibi1 · · ·
n∑

j=1

a1ibip

...
. . .

...
n∑

j=1

amibi1 · · ·
n∑

j=1

amibip

 = C

It’s here that we conclude the derivation.
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